高杰维

个人简介

追求真理,实事求是。欢迎思想先进、态度端正且具有机械、材料、力学等工程交叉学科背景学生加入,共同成长进步。

工作经历

2023.09-至今 yl9193永利官网 讲师; 2023.12-至今 西南交通大学力学与航空航天学院 博士后(马钢交材股份联培); 2022.03-2023.04 德国联邦材料研究与测试研究所 访问学者; 2020.03-2023.08 电子科技大学机械与电气工程学院 博士后; 2017.07-2020.02 西南交通大学牵引动力国家重点实验室 助理研究员

教育经历

2010.09-2017.06 硕博 西南交通大学 材料科学与工程; 2006.09-2010.06 本科 西南交通大学 材料科学与工程

研究方向

部件安全

研究内容1:部件失效机理与损伤容限评价

研究内容2:部件疲劳断裂行为与可靠性设计方法

研究内容3:基于服役适用性的部件表面工程设计与评价


学术成果

发表论文:

[1]   Jie-Wei Gao, Ding Liao, Hai Zhao, et al. Fatigue behavior assessment of heavy-duty freight railway axles under different heat treatments. Engineering Failure Analysis, 164(2024)108654.

[2]   Ding Liao, Jie-Wei Gao*, Shun-Peng Zhu, et al. Fatigue behaviour of EA4T notched specimens: Experiments and predictions using the theory of critical distance. Engineering Fracture Mechanics, 285(2023)109269.

[3]   Jie-Wei Gao, Rui-Peng Han, Shun-Peng Zhu, et al. Failure causes and hardening techniques of railway axlesa review from the perspective of structural integrity. Engineering Failure Analysis, 141(2022)106656.

[4]   Jie-Wei Gao, Xin Dai, Shun-Peng Zhu, et al. Influence of induction hardening on the damage tolerance of EA4T railway axlesEngineering Failure Analysis,143(2022)106916.

[5]   Jie-Wei Gao, Guang-Ze Dai, Qiu-Ze Li, et al. Fatigue assessment of EA4T railway axles under artificial surface damage. International Journal of Fatigue, 146(2021)106157.

[6]   Jie-Wei Gao, Ming-Hua Yu, Ding Liao, et al. Fatigue and damage tolerance assessment of induction hardened S38C axles under different foreign objects. International Journal of Fatigue, 149(2021)106276.

[7]   Jie-Wei Gao, Ming-Hua Yu, Ding Liao, et al. Foreign object damage tolerance and fatigue analysis of induction hardened S38C axles. Materials & Design, 202(2021)109488.

[8]   Jie-Wei Gao, Xiang-Nan Pan, Jing Han, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles. International Journal of Fatigue, 139(2020)105746.

[9]   Hai Zhao, Ding LiaoJie-Wei Gao*, et al. Damage tolerance assessment of heavy-duty freight railway axles with artificial defects. Chinese Journal of Mechanical Engineering, 2025, in press.

[10]  Hai Zhao, Ding LiaoJie-Wei Gao*, et al. Fatigue performance evaluation of high-strength railway axles subjected to different surface defects, Alexandria Engineering Journal, 2025, in press.

[11]  Minnan Zhang, Jiewei Gao, Ruipeng Han, et al. Tribological Properties of AISI 52100 Bearing Steel under Different Sliding Distance and Normal Force Conditions. Journal of Materials Engineering and Performance, (2024)1-13.

[12]  Minnan Zhang, Jiewei Gao, Ruipeng Han, et al. Influence of laminar plasma surface quenching on the microstructure and corrosion resistance of AISI 52100 bearing steel. Materials Letters, 372(2024)136954.

[13]  Minnan Zhang, Deping Yu, Jiewei Gao, et al. Influence of Laminar Plasma Surface Quenching on the Tribological Properties of AISI 52100 Bearing Steel. Journal of Materials Engineering and Performance, 33(2024)7999-8014.

[14]  Jin-Chao He, Shun-Peng ZhuJie-Wei Gao, et al. Microstructural size effect on the notch fatigue behavior of a Ni-based superalloy using crystal plasticity modelling approach. International Journal of Plasticity,172(2024)103857.

[15]  Ding Liao, Shun-Peng ZhuJie-Wei Gao, et al. Energy field intensity approach for probabilistic notch fatigue assessment under size effect. Chinese Journal of Aeronautics, 2024.

[16]  Ding Liao, Shun-Peng Zhu, Jie-Wei Gao, et al. Generalized strain energy density-based fatigue indicator parameter. International Journal of Mechanical Sciences, 254(2023)108427.

[17]  Ding Liao, Shunpeng Zhu, Jiewei Gao, et al. Energy field intensity approach for probabilistic notch fatigue assessment under size effect. Chinese Journal of Aeronautics, 2025, 38 (2): 103304-103304.

[18]  Qingsong Zhang, Zhenyu Zhu, Jiewei Gao, et al. Effect of Anisotropy and Off-Axis Loading on Fatigue Property of 1050 Wheel Steel. Acta Metallurgica Sinica, 53(2017)307-315.

[19]  Lei Zhang, Xingmin Huang, Yuanbo Guo, Yanhua Wang, Jiewei Gao. Effect of ARTAnnealing Conditions on Microstructural Regulation and Deformation Behavior of 0.17 C9Mn3.5 Al TRIPAided Steel. steel research international, 88 (2017) 1600410.

[20]  Yiwen Peng, Junwen Zhao, Yifeng Liu, Ruipeng Han, Zhiwei Liu, Jiewei GaoGalvanic corrosion between AlZnMgCu alloy and stainless steel in the salt-spray atmosphere. Materials Chemistry and Physics, 294(2023)127009.

[21]  Xue-Kang Li, Si-Jia Chen, Shun-Peng ZhuDing LiaoJie-Wei Gao. Probabilistic fatigue life prediction of notched components using strain energy density approach. Engineering Failure Analysis, 124 (2021)105375.

[22]  Jin-Chao He, Shun-Peng ZhuDing Liao, Xiao-Peng Niu, Jie-Wei Gao, Hong-Zhong Huang. Combined TCD and HSV approach for probabilistic assessment of notch fatigue considering size effect. Engineering Failure Analysis, 120(2021)105093.

[23]  Lei Xu, Guangze Dai, Xingmin Huang, Junwen Zhao, Jing Han, Jiewei Gao. Foundation and application of AlZnMgCu alloy flow stress constitutive equation in friction screw press die forging. Materials & Design, 47(2013)465-472.

[24]  高杰维余明华朱顺鹏高速列车S38C车轴外物致损模拟与疲劳性能研究机械工程学报, 2022,58(24):178-187.

[25]  刘里根肖棚高杰维*铁路车轴表面强化技术研究与应用表面技术, 2023, 52(06): 96-111.

[26]  高杰维戴光泽赵君文压痕对车轴钢疲劳极限的影响工程科学学报, 2016, 38(6): 827-833.

[27]  高杰维戴光泽梁树林压痕对表面感应淬火中碳钢疲劳性能的影响材料热处理学报, 2016, 37(9): 183-189.

[28]  高杰维赵君文徐磊压痕对氮碳共渗S38C钢疲劳性能的影响材料热处理学报, 2015, 36(12): 217-222.

[29]  高杰维张鲲徐磊. 7A04-T6铝合金在氯化钠溶液中的腐蚀行为及其对拉伸性能的影响腐蚀与防护, 2014, 35(3): 239-243+247.

[30]  吴鹏程高杰维赵海.人工缺陷下感应淬火重载铁路车轴损伤容限评价.表面技术,2024, 53(19): 173-185.

[31]  刘里根高杰维肖棚表面滚压处理对EA4T车轴钢疲劳性能的影响工具技术, 2023, 57(02): 27-32.

[32]  肖棚高杰维刘里根激光熔覆修复EA4T车轴钢显微组织和强度评价材料导报, 2022, 36(7): 115-121.

[33]  余明华高杰维刘里根外物损伤对S38C车轴钢疲劳性能的影响材料导报, 2021, 35(20): 92-98.

[34]  卜玮杰高杰维戴光泽人工缺陷对S38C车轴钢疲劳极限的影响机械工程材料, 2020, 44(5): 16-20.

[35]  牛晓鹏朱顺鹏高杰维多源不确定性下叶盘结构疲劳可靠性分析与优化设计推进技术, 2022, 43(2): 228-236.

[36]  廖鼎朱顺鹏高杰维耦合临界平面-临界距离理论的缺口结构疲劳寿命预测机械强度, 2023, 45(02): 454-461.

[37]  徐月婷高杰维王超群. 7A04-T6铝合金中金属间化合物对其阳极氧化膜耐蚀性的影响腐蚀与防护, 2014, 35(11):1078-1082.

[38]  高杰维张鲲徐磊. 7A04-T6铝合金在氯化钠溶液中的腐蚀行为及其对拉伸性能的影响腐蚀与防护, 2014, 35 (03): 239-243+247.

[39]  陈江黄兴民高杰维低镍球墨铸铁低温冲击性能及断裂机理研究材料工程, 2012, (12):33-38.

科研项目:

[1]   主持四川省自然基金面上项目,2024NSFSC2020,表面感应淬火车轴淬硬层裂纹扩展行为与设计方法研究,2024.11-2026.10

[2]   主持广东省基础与应用基础研究项目,2022A1515140111,基于损伤容限的高速列车车轴外物致损评价与表面完整性设计方法研究,2022.10-2025.09.

[3]   主持四川省重点研发项目,2021YFG0210,考虑外物损伤的高速列车车轴剩余寿命预测和损伤容限评定,2021.04-2023.03.

[4]   主持国家重点研发计划课题子任务,2018YFB1201704-03,自适应转向架动力学性能试验研究,2020.06-2020.12.

[5]   主持西南交通大学牵引动力国家重点实验室自主课题,TPL2019-021,高速列车车轴冲击损伤形成机理及其损伤容限研究,2019.01-2021.12.

[6]   主研国家自然科学基金重点项目,12232004,面向服役安全的热端结构损伤容限可靠性设计理论与方法研究,2023.01-2027.12.

[7]   主研科创中国科技服务团项目,KJFWT2024-01-042,高速重载车轴表面改性关键技术研究,2024.08-2025.07.

[8]   主研德国联邦工业研究协会(AiF)钢铁应用研究协会(FOSTA)项目,IFG 20530 N/1263,材料本征门槛值的确定方法和应用,2022.03-2023.03.

[9]   主研中国铁路总公司科技研究开发计划课题,2016J007-H,动车组运用维护技术研究—CRH3/CRH5型动车组轮轴损伤容限及限速标准研究,2016.05-2018.06.

企业委托项目:

[1]   主持企业委托项目,感应淬火车轴技术与装备研究,2025.03-2026.06.

[2]   主持企业委托项目,深度滚压车轴工艺设计与损伤容限评价,2024.01-2025.12.

[3]   主持企业委托项目,高速车轴损伤容限测试,2024.04-2024.12.

[4]   主持企业委托项目,重载铁路车轴损伤容限研究,2022.01-2022.12.

[5]   主研企业委托项目,轮盘裂纹扩展实时监测方法研究,2023.08-2024.07.

[6]   主研企业委托项目,非标圆棒件断裂韧性分析研究,2024.01-2025.06.

[7]   主研企业委托项目,CRH2动车组车轴表面裂纹敏感性研究,2013.05-2015.04.

教学工作

荣誉奖励

社会兼职